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Abstract

Analyzed is transient response of a hollow cylinder to time dependent radial and axial velocities prescribed at the
cylinder’s inner boundary. Modal and static solutions are superimposed for solving transient response. Axial depen-
dence is expressed by two orthogonal sets of periodic functions; one set satisfies vanishing axial stress at the cylinder
ends and applies to the radial traction problem, and the other set satisfies vanishing shear stress at the ends and applies
to the axial traction problem. The mixed boundary value problem with velocity prescribed over part of the boundary
and vanishing stress prescribed over the remaining part is analyzed by the method of influence coefficients. This method
superimposes response from several external annular traction segments of unit intensity with time dependent weights
yielding a combined response equal to the prescribed instantaneous velocity.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction
Trauma in human organs from projectile penetration is caused by two mechanisms:

(1) Tissue damage along projectile path. This interaction is hydrodynamic in nature where inertial and fric-
tional forces dominate the projectile’s motion as it decelerates and eventually stops.

(i1) Stress waves generated at the cylindrical interface between projectile and tissue from radial and axial
velocities prescribed by the projectiles during penetration. These waves radiate to neighboring tissue
and organs causing further damage.

The present analysis concerns mechanism (ii) above.
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As the projectile penetrates into tissue, it moves material by replacing it with its own volume. When
the material fails, it acts more like a fluid, lessening the amount of material being compressed. In the
radial direction, material is compressed by an expanding cross-section of the projectile’s smoothly
curved nose. As long as the projectile’s speed is much smaller than the speed of stress waves in the
material, the moving projectile can be approximated by radial and axial velocities prescribed along its
boundary. For a projectile speed of 330 ft/s and a dilatational speed in tissue material of 5600 ft/s, this
approximation is valid.

Dynamic response of solid and hollow elastic cylinders has been studied extensively in the literature as it
applies to a variety of engineering and science problems. A large body of references concerns sound
scattering by elastic cylinders in the frequency domain. Among these are Stanton (1988), Honarvar and
Sinclair (1996), Bao et al. (1997), Wang and Ying (2001). Stepanishen and Janus (1990) treat transient
radiation and scattering from fluid loaded cylinders. Frequency response of cylinders is analyzed by
Grinchenko and Meleshko (1978), Batard and Quentin (1992), and Grinchenko (1999). Soldatos and Ye
(1994) treat anisotropic laminated cylinders, and Hussein and Heyliger (1998) consider layered piezoelectric
cylinders. Cheung et al. (2003) analyze the 3-D vibration of solid and hollow cylinders by the Chebyshev—
Ritz method. Very few references discuss transient response of elastic cylinders. Paul and Murali (1995)
determine the axisymmetric dynamic response of poro-elastic cylinders. Soldatos (1994) presents a com-
pilation of more than 150 references on frequency response of solid and annular elastic cylinders, yet not a
single one addresses transient response. Yin and Yue (2002) solve the transient plane-strain response from
impulse of infinite length multi-layered cylinders. From the list above, this is the only reference relevant to a
special case of the present analysis.

The influenced region is simulated by tissue material in the shape of a hollow cylinder. Let (r,z) be radial
and axial coordinates with origin at one end of the cylinder axis. The inner cylinder radius r, is that of the
penetrating projectile while its outer radius r, and length / are chosen to include the furthest radial and
axial locations affected by penetration. In a coordinate system (r,z) centered at one end of the finite cyl-
inder, the projectile lies in the interval z, <z <z, such that z, —z, = [, where [, is projectile length. The
tissue material is linear visco-elastic with a constitutive law that includes first temporal derivatives of stress
and strain.

For simplicity and without loss of generality, axial functions satisfying the differential equations and
specific boundary conditions at the two ends of the cylinder z = (0,/) are divided into 2 sets. One set
satisfying vanishing axial stress o, at z = (0, /) which has radial and axial displacements (u, w) proportional
to (sin(mnz/1),cos(mnz/1)) belongs to “problem 17, where m is an integer wave number. The other set
satisfying vanishing shear stress t,. at z = (0, /) which has (u,w) proportional to (cos(mnz/l),sin(mnz/I))
belongs to “problem 2”°. The first set applies to radial tractions prescribed at the cylindrical footprint » = r,,
z, <z < z;, while the second set applies to prescribed axial tractions along the same footprint. The fact that
each set satisfies different boundary conditions does not affect transient response until waves reflect from
the axial boundaries. Consequently, one problem is solved for each type of forcing excitation and results are
superimposed if both types of excitation are acting simultaneously.

The form of the forcing function closest to the application is radial and axial velocity prescribed over
part of the inner cylindrical boundary, yet this leads to a mixed boundary condition. This difficulty can be
overcome by superimposing response from a set of unit radial or axial tractions with time dependent
weights prescribed on annular portions of the inner boundary. These weights are updated at each time step
using the condition that combined velocity response at the center of each annular portion equals the
prescribed instantaneous velocity. In this way, the forcing function is converted to pure radial or axial
traction with time varying spatial dependence.

Section 2 derives frequency and transient response of the hollow cylinder with finite length. Section 3
presents stress histories from prescribed radial and axial pressures and velocities at the inner
boundary.
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1.1. Elastic analysis
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In the analysis to follow, all subscripts will denote components and not partial derivatives. In cylindrical

coordinates, the elastodynamic equations are
Vi + (A4 ) V(V -u) = pd,u
V2 =0, +1/rd, + 1/r*dp + 0.
V = (1/ro,r)e, + (1/r0p)eq + (0. )e.

(1)

(r,0,z) are radial, circumferential and axial independent variables, u = {u, v,w}T is displacement vector

along these directions, (4, u) are Lame constants, p is mass density and ¢ is time. Re-write (1) as

uVia+ (A4 20)V(V -u) — uV(V -u) = pd,u
Noting that
uVu—uV(V-u) = —uV x V xu
permits casting (1) in the form
(A+20)V(V -u) — uV x V x u = po,u
Define dilatation 4 and rotation vector \ as
A=V-u, y=Vxu
Substituting (4) in (3) yields (Love, 1944)
(A+2u0)VA4 — uV x Yy = pd,u
Taking the divergence of (5) noting that V - (V x ) = 0 yields
(2 +2u)V?4 = pA,
Taking the rotation of (5) noting that V x (V4) = 0 yields
UV = p\,
For axisymmetric motions, v = 9y = 0 and y, = ., = 0 reducing (6) and (7) to
(A+20)Vid = pd,
HV%‘//() = P‘po,n
Vﬁ =0, +1/ro,—n*/r* +0., n=0,1
Expressing (4) in terms of u yields
A =1/ro,(ru) + o,w
WYy =0.u— 0w
Decoupling u and w in (9) produces
Viu=20,4+d.y,
Vow = 3.4 — 1/rd,(rp,)

(2a)

(2b)

(10)

For the radial “problem 17 satisfying 6., = 0 at z = (0, /), harmonic motions in time with radian frequency

o and simply supported boundaries at z = (0, /) yields the separated solution
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{A(r,2,0,(r, 2,0} = {A(r) cos(kz), Py (r) sin(k:z)} e
{u(r,z,0),w(r,z,0)}" = {a(r) sin(kz), w(r) cos(k.2)} e

i=+v—1 and k, = mn/l where m is an integer axial wave number. The z dependence in (11) yields
u = g,, = 0 at the cylinder ends z = 0, /. For real k., and k,, Eq. (8) admits the solution

Z(I") = C]Jo(kel”) + CzYo(kel”)
Wo(r) = Csi(ker) + CaYi (kyr)

(11)

(12)

ki =/ =k, cg=(A+2u)/p

K==k, =u/p

J, and Y, are Bessel functions and ¢y, ¢s are dilatational and shear speeds of sound. If either k. or k; is
imaginary, J, and Y, in (12) are replaced by the modified Bessel functions 7, and K, with appropriate
changes in sign. Substituting (11) and (12) in (10) then solving for u(r) and w(r) yields

ﬁ(r) = —ke(ClJl (kel”) + C2Y1 (kel’)) =+ kZ(C3J1 (ksl") =+ C4Y1 (kﬂ")) (13)
17\/(7‘) = kz(ClJ()(kel") + CQY()(kJ‘)) + kS(C3J0(kSI") + C4Y0(ksr))

In cylindrical coordinates, the constitutive relations are
O = A4+ 2udu, g9 = AA + 2uu/r
0. = AA +2ud.w, 1. = u(d.u + 0,w) (14)
A=0u+u/r+0ow

For “problem 17, harmonic motions in time and simply supported boundaries at (0, /) yield the separated
relations

O G, () sin(k.z)

T _ ) Goo(r) sin(kez) \ ion

oo (5D =9 Gl sinls) (© (152)
T, 7,.(r) cos(k.z)

Boundary conditions at » = r, and r = r, are
0, (1p,2,t) = p()[H (z — z,) — H(z — z})]
T (rp,2,8) =0 (15b)
0 (Foy2,t) = 1,5(Fo,2,2) =0
p(t) is a time dependent uniform radial traction acting on the inner cylindrical boundary r = r, in the
interval z, <z <z,. The z dependence in (15a) yields u = g, = 0 at the cylinder ends z = 0, /. Substituting
(11), (13) and (15a) in (14) yields
Gu(r) = [ = (2 + 20k + 242 )Jo(ker) + 2pk’ T, (ker) [ (ker) | C
+ [ = ((A+2w)k2 + 22) Yo (ker) + 20k Y, (ker) [ (Kor)] C
+ 2pkik, [Jo (kgr) — Ty (kgr) [ (ks#)) Cs 4 2ubsk, [ Yo (kgr) — Yy (k) [ (kgr) ] Cy (16a)

6'()()(1") = — [/I(kzz + kg).]()(ker) + 2,[1](3.]1 (ker)/(kgi’)] Cl
— [0 + k) Yo (ker) + 20k Yi (er) [ (ker) | C + 241k [ Csy (kor) + CaY (Kor)] / (k) (16b)
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5‘22(7’) = — ((/1 + 2/1)](22 + /lkez) [ClJ()(kel") + CzY()(ke}’)] — 2M/€3-kZ[C3J0(]Q-F) + C4Y0(ksr)] (160)

T:(r) = =2pkek:[Ciy (ker) + CoYi (ker)] — n(k] — K2)[C3J1 (kor) + CaY (Kor)] (16d)

Since o, is proportional to sin(k.z) in (15), it vanishes at z=0,/. This allows a rigid body motion
w(r, z;t) = w,(¢) when external traction acts along z. To avoid the rigid body motion, an additional axial
functional dependence is considered for “problem 2”

u _ u(r)cos(k.z) | .,
{ W }(r’ 20 = { w(r) sin(k.2) }e

O,y Urr(r) COS(/CZZ) (1721)
G0 aoo(r) cos(kz) | .,
(rz,t) = €
c.. 6.(r) cos(k.z)
T, 7,.(r) sin(k.z)

that satisfies the following boundary conditions at » = r, and r =r,
Grr(rpaz7 t) = O
Tre(Pps2,t) = p(O)[H(z — 2,) — H(z — zp)] (17b)
G (Foy2,t) = T2(r0,2,8) =0

p-(t) is a time dependent uniform axial traction acting on the inner cylindrical boundary » = r, in the
interval z, <z < z,. The z dependence in (18a) yields w = 7,, = 0 at the cylinder ends z = 0, /. In the analysis
to follow, superscripts (1) and (2) will denote radial and axial problems respectively. Derivations for
problem (2) follow the same steps as those for problem (1) and are omitted here for shortness. Although
conditions at the boundaries z = 0, / of each problems are different, they do not affect the transient response
at times preceding reflection of waves from these boundaries.

Divide the cylindrical surface {r = rp,z, <z<z,} into n + 1 equidistant ring stations with increment A4z,

(18)

Z1,22,23,- -2, Z] —Zj—1 = Az, = const
z1 =2z, + (I — 1)4z,

Assume a uniform pressure of unit intensity to act over each ring segment z;_; — z;. The elasto-dynamic
solution to the kth ring pressure segment is outlined below.

For each pressure segment, expand each dependent variable in terms of eigenfunctions that satisfy
homogeneous boundary conditions. Express total displacement u(r,z;¢) as a superposition of two terms

w2 (r,z:0) = wQ? (r,2) £, (0) + G (230 (19)

ué,l(‘z)(r,z) is static displacement vector satisfying (2a) when time derivative vanishes (Appendix A),

uéﬁ(‘z) (r,z;t) is dynamic displacement vector satisfying the dynamic equation of motion (2a), and f,(¢) is time

dependence of the forcing pressure. For each axial wave number m, express uélk"z) (r,z,t) in the eigenfunctions

(1.2) ;
@, (r, z) (Appendix B)
udk r z, t Z Zam/k mj ) (20)
(1,2)

a,; (t) is a generalized coordinate of the jth eigenfunction with m axial half waves from the kth pressure

segment. Substltutmg (19) and (20) in (2a) and enforcing orthogonality of (I) (r z) yields uncoupled

equations in afn o’ (t). For an undamped elastic cylinder the equation governing am/k)(t) is
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&’ 12y _ 7(12)
(Gt o Jas 0 =720 1)

ﬁi}ﬁ(r) = NowiSo(t)/No
/ / (D 12 o' )(r z)dzrdr (21b)

amjk / / ( >(r, z)dzrdr

., 1s the resonant frequency. The solution to (21a) takes the form

t

a2 (h) = b sin w,,;(t — 1) /52 (1) dt (22)

mjk i Jo mj

Evaluating radial and axial displacements u;(r,z; ¢) for problem (1) and wy(r,z; ¢) for problem (2) from the
kth pressure segment at each central point z,; = (z; +z;_1)/2 of a pressure segment yields coefficients of the
influence matrices

Ulk Z Zamjk m/k rP7ZC]) + uik (rP7ZCl)f}7( )

(23)
Wik(1) Z Zamjk mjk (rp, Zer) +Wk (rps zet) fp(2)

{ﬂf,,l}k(rp,zcz), v‘vff}k(rp,zcl)} and {us,C (Pp, Zet)s wi,? (7p,zor)} are modal and static displacement dyads at z.; from
the kth pressure segment in problems (1) and (2) respectively. In (21) and (23) f,(¢) is a first approximation
to the time dependence of the applied pressure. One approximation is determined from the plane- strain
state when axial length of cylinder and footprint approaches infinity (Appendix C). Enforcing the condition
of prescrlbed displacements u( )(¢) and w§,2>(t) at each time step yields a set of simultaneous equations in the
weights pk ) and pk>

ZUlk pk = pl(), 121,...71/1
(24)
ZW”‘ pk = pz(), I=1,...,n

In what follows, superscripts (1,2) are dropped for shortness. For an elastic material, eigenvalues and
resonant frequencies are synonymous. In this case, the eigenvalues appear in pairs w,,; and —w,,;. Con-
sequently Eq. (22a) takes the form

Fouit(t) = Namjifyp(£) /N
1 ro
Namje = /0 / use (1, 2) - @y (x,2)rdrdz (25b)

1 ro
N,y = /0 / D,,;(r,z) D,;(r,z)rdrdz
p
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1.2. Visco-elastic analysis

For a visco-elastic material, w,,; and ®,,;(r,z) in (25) are both complex

Wpyj = WpRj + i(Uij (263)

! To
N, :/0 / ®,,(r,z) - @, (r,z)rdrdz (26b)

(138 j(r z) is the complex conjugate of the eigenfunction. Unlike the elastic case where for each eigenfunction
the eigenvalue pair is +,,; and —,,, in the visco-elastic case the pair is +a,,; and —o;,; where ()" stands
for complex conjugate. This means that wy,; = gy, + ivr,; and wy,; = —@ry; + ioy,;. The reason wy,;
retains the same sign for both solutions is that wy,,; is a measure of damping which reduces amplitude
whether the real part is +wg,; or —wg,,;. Consequently Eq. (21a) takes the form

d . d . . d d .
("‘“””f')(mlwz,)amjk(r)=fmjk<> [pw = On)) g+ OOy | @ne(0) = Fo(t) - (27)

dz
Noting that i(w},; — ®,)) = 201, and 0,0}, = g, + of,., (27) simplifies to
K5 d -
dtz + 2601’”/ dr + (’Uij + wlm] amﬂ( ) - fmjk(t) (28)

Clearly, wy,,; acts as a velocity proportional viscous damper. Rewriting (28) in standard form:

e

d - Otmj [
dt2 + 2Cm]wm1 dr + w :|am/k( ) = fm_ik(t)5 Q’mj = i; Wpj = wlzzmj + w%mj (29)

yields a solution in terms of a Duhamel integral:

1 ro Lo _
_ e Em@mi(1=1) i comj(t _ r) fmjk(‘t) dt
@Omj Jo (30)

N _ 2
WOpj = Wpyj 1- ij

anji(t) =

The general constitutive law for a linear viscoelastic material takes the form (see Fung (1965, pp. 416-418))

N, e Ny

Tsn n Z Gt” ) =T = 1 (31)

n=0
Tans Ten are constants and E, is a modulus. For a sinusoidal time dependence, (31) assumes the form of a
Padé series

= B.(Ny, N;; 0)Eqe

ﬂ Nastvw § ‘Can I(U § Tm ICL)

p.(N,,N;; ») is a complex valued function of w. The simplest linear visco-elastic solid limits N, and N, to 1
reducing (32) to

(32)

(T4 tmiw) .
7= Tt taio) 2ot = Pl L 0)Eoe .
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For the constitutive law in (33), approximations to wr and w; in (26a) are
or = 00| B(1, 1300, on =~ ooIm (B12(1, 1 000) )

(34)
W0 = Do + 101 = W% [|51/2(1, 15 )| +i1m(/3;/2(1, 1;%))}

, 1s the eigenfrequency of the linear elastic problem.

2. Results

In all results to follow, geometric and material properties of the cylinder are listed in Table 1. Fig. 1(al)
plots the static deformed generator from a unit radial displacement prescribed at the footprint

Uso(rp,z) =H(z—z,) — H(z — z) (35a)

In (35a) z, = 1.5” and z, = 2.5". The resulting normalized o,,(7,,z) distribution plotted in Fig. 1(bl) shows
a rise near z, and z, of 1.5 times its magnitude at the plateau. Fig. 1(a2) and (b2) plot static deformed
generator and normalized ¢,,5(r,,z) distribution for a unit axial displacement prescribed at the footprint

Wso(¥p,z) = H(z —z,) — H(z — z) (35b)

In this case, ¢, rises near z, and z, to 1.7 times its magnitude at the plateau.

Fig. 2(a) and (b) plots resonant frequency 2 in Hertz versus m with &, as parameter for the two problems.
The two spectra are almost identical for all m and k..

In Eq. (23), influence coefficients Uy, and W, require an approximation to the time dependence of the
forcing pressure f,(f). One approximation is determined from the plane-strain state when axial length of
cylinder and footprint approaches infinity (Appendix C). Fig. 3(a)-(d) plot histories of the plane-strain
problem when a constant velocity U, = 330 m/s is prescribed at r = r,. There, u history shown as solid line
in Fig. 3(a) reproduces the prescribed u, profile. At » = 2r, and r = 4r,, u histories exhibit the time-delay in
wave front from propagation with finite speed ¢,. The closeness in magnitude of peak a,., gg9 and o, (Fig.
3(b)-(d)) implies a hydrodynamic state of stress. Geometric stress attenuation along r is proportional to
r12,

The o,,(r,) plane-strain history in Fig. 3(b) serves as the approximation to f,(¢) in the 3-D axisymmetric
model as it is the limit when projectile and cylinder lengths are the same. Fig. 4(al)—(d1) plots histories from
the prescribed uniform pressure profile f,(¢) at the center of the footprint z = 2”. The u history in Fig. 4(al)
does not follow the prescribed u, profile because applied pressure is uniform over the footprint. Applying
the influence method of Section 2 yields the histories in Fig. 4(a2)—(d2). The u(r,) history in Fig. 4(a2)
matches the prescribed u, profile. At the footprint, except for the higher stress peaks, results from pre-
scribed velocity agree with those from the prescribed plane-strain pressure profile f,(¢). At » > r,, results

Table 1
Cylinder properties
E (Ib/in%) 4.5%10*
p (Ibs?/in*) 8.7x 1073
v 0.48
[ (in) 4
rp (in) 0.25
7o (in) 3
cq (in/s) 6.74x10*

¢ (in/s) 1.322x 10*
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prescribed u(r, ,2) prescribed w(r, ,2)
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Fig. 3. Plane-strain histories from prescribed radial velocity (—) r =r,, (---) ¥ = 2r,, (——-) ¥ = 4rp; (@) u, (b) 0,5, (¢) 049, (d) 0.
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prescribed pressure prescribed velocity

ap2f (@1) ' | [(a2)

2E2| T i

L (b1)

3.E4

1.E4

t (us) t (us)

Fig. 4. Histories from radial excitation at z = 2" (—) r = r, (---) r = 21y, (———) r = 4ry,; (al), (b1), (cl), (d1) prescribed pressure from
plane-strain (a2), (b2), (c2), (d2) prescribed velocity.

from the two forcing methods coincide implying that the plane-strain pressure profile is a good approxi-
mation to the actual profile determined by the influence method. Geometric stress attenuation along r is
proportional to »~¥/*. Fig. 5(a)—(d) plots histories from prescribed velocity remote from the footprint at
z = 2.6". There, peak normal stresses are 1/5 those under the footprint (see Fig. 4(b2), (c2) and (d2)). This
steep drop in stress across the edges of the footprint is caused by the low shear rigidity of the material
consistent with the ratio ¢;/cq ~ 1/5 from Table 1.

Fig. 6 plots instantaneous o,.(rp, z; o) distributions for 2 ps < 7, < 12 ps in intervals of 2 ps. For #) =2
us, the distribution is parabolic with a maximum at the center of the footprint. As time increases, the
distribution becomes flatter then develops peaks near z, and z, resembling the static case in Fig. 1(b1). The
step-like shape of the distribution is an artifact of the finite number of pressure ring segments dividing
the footprint. In Fig. 6, the 8 steps correspond to 8 ring segments. The distribution becomes smoother as
number of ring segments increases.

For an axial prescribed velocity at » = r, along z, < z < z,, the approximation to f,(z) is determined from
the solution of the pure-shear problem of an infinite cylinder with axial velocity prescribed at » = r, derived
in Appendix D. Fig. 7(a) and (b) plots histories of w and ,. for the case of pure shear. Since ¢;/cq = 1/5, the
time range in these histories is extended to 40 ps to allow for the longer arrival time at stations remote from
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Fig. 7. Pure-shear histories from prescribed axial velocity (—) r = ry, (---) r = 1.6rp, (———) r = 2.2r,,; (a) W, (b) T,
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the footprint. The z,, profile in Fig. 7(b) is then used as an approximation f, () in computing histories with

prescribed velocity.

Fig. 8(al) and (bl) plots histories at the center of the footprint z = 2” from a uniform t,., (7}, z, t) = f,(¢)
prescribed over the footprint. Fig. 8(al) shows that O,w is the same as prescribed velocity U, = 330 ft/s till
t = 10 ps, then diminishes to 200 ft/s near ¢ = 40 ps. On the other hand for prescribed velocity, o,w in Fig.
8(b2) is constant for all times and equals U,. Magnitude of .. in Fig. 8(b2) is higher than that in Fig. 8(b1)

by approximately a factor of 1.3.
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Remote from the footprint at z = 2.6”, histories with prescribed pressure (Fig. 9(al)—(d1)) are compared
to those with prescribed velocity (Fig. 9(a2)-(d2)). In Fig. 9(al)—(d1) all variables are approximately half
the corresponding variables in Fig. 9(a2)—(d2). Fig. 10 plots t,. distribution along the footprint. For 7, < 10
us, 1,.’s distribution is uniform. As time increases, 7, rises steeply near the edges of the footprint reaching a
value double its value at the center at 7, ~ 40 ps.

3. Conclusion

Wave propagation in a hollow cylinder is analyzed for pressure and velocity prescribed at its inner
boundary. The difficulty arising from the mixed boundary conditions is overcome by the influence coeffi-
cient method. An approximation to the prescribed pressure profile needed in this method is determined
from the plane-strain solution. Noteworthy results are

(1) The stress state close to impact is almost hydrodynamic.
(2) Results from prescribed radial velocity agree with those from prescribed uniform pressure determined

from the plane-strain model.
(3) In the plane-strain model, stress attenuation along r follows »~'/?> while in the 3-D axisymmetric model

it follows »—3/4.
(4) For prescribed radial velocity, the instantaneous o, distribution is parabolic soon after impact, and ap-

proaches the static distribution for large times.

(5) Near the center of the footprint, results from prescribed axial velocity agree with those from prescribed
uniform shear stress determined from the pure-shear model. However, near the edges of the footprint,
stresses from prescribed pressure are half of those from prescribed velocity because in the later 7, rises

near the edges by the same factor.

Appendix A. Static problem

In what follows, all dependent variables pertaining to the static solution will be subscripted by s. The
static axisymmetric equations in terms of displacements are

(2420093 + i) + (4 13w, = 0

(o + w)0.(0, + 1/r)us + (uV2 + (24 2u)0..)wy = 0
6% =0, +1/ro, —n?/*, n=0,1
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Eq. (A.1) decouple to
u(i+20)(V] +02)'u = 0 (A2)
1O+ 20) (V5 +02) s = 0 '

For the radial traction problem satisfying 0., = 0 at z = (0, /), separation of variables follows Eq. (11) in
the text. Summing over all &, yields

ug(r,z) = Z s (1) 1 (k2 (A.3a)
ws(r,z) = Zwms(r) cos(konz),  kow = mm/l (A.3b)

Substituting (A.3) in (A.2) produces uncoupled equations in » for each £,
(V3 =k, s (r) = 0

N (A.4)
(v(2) - kzzm)zwms(r) = 0
In what follows, subscript m will be dropped for shortness. Eq. (A.4) admit the solutions
[IS(V) = Clll (kzi") + C2K1 (kzl") + C3(kzl"10(kzr> — ]] (kzl")) — C4(kZVK0(kZI") + Kl (kzl")) (ASa)
WS(V) = C]]()(kzl") — CzKo(kZ}") —+ C3 (OC]]()(kZ}’) + kzl"ll (kzl")) + C4(—061K0(kzl’) + kZVKl (kzi’)) (A Sb)

o =A+30)/(A+n), a=21/(A+p)
Substituting (A.5a) and (A.5b) in the constitutive relations (14) and (15a) of the text yields
Gps(r) = 20k, (Cy (Lo (kor) — I (kor) [ (or)) — Co(Ko(kor) + Ky (ker) [ (Ker)))
+ 2uk.Cs(—oady(kr) + (1 + (ko)) (ker) [ (k) + 20k Ca (0 Ko (kar) + (1 + (ker)*)K (o) / (o))

(A.6a)
Goos(r) = 2uk.(Cili (k1) [ (k) + oKy (kor) [ (ker)) + 20k C5 (1 — o)Ly (iker) — 1y (kor) / (k.1))
+ 2pk. Ca(—(1 — ) Ko (kor) — Ky (kor) / (K.r)) (A.6b)
0.2 (r) = 2uk,(—Ci 1y (kor) + CoKo(kor)) 4 20k, C3(— (00 + 00) o (kor) — kot Dy (K1)
+ 2ﬂkZC4((061 + O(z)K()(kzl") — kzl"Kl (kzl”)) (A6C)

T, (r) = 2uk,(Ci 1y (kor) + CoK, (kor)) + 2uk, Cs (korly(kor) + (1 — o)1y (ko))
+ 2,usz4(—ker0(kzr) + (1 — O(z)Kl (kzl")) (A6d)
Tractions at the inner and outer surfaces of the tube are expressed as

Oprs(rp,2) = pr(H(z — 2,) — H(z — 23))

A7
Tros(Fp,z) = 0 (ATa)

Grs(F0r2) = Ts(7o,2) = 0 (A.7b)

p» is a uniform radial traction prescribed at » = r, in the interval z, <z < z,. Substituting (A.6a) and (A.6d)
in (A.7a) and (A.7b) and enforcing orthogonality of sin(k.z) and cos(k.z) produces M (4 x4) uncoupled
matrix equations in the coefficients Cy,,, k = 1,4
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M.,,C,, = f,, (A.8)

Coeflicients of M, are the radial functions multiplying Cj,, in (A.6a) and (A.6d) evaluated at » = r,, and
r =r,, and f, is a vector defined by

flm = _zpr(cos(kzmzb) - Cos(kzmza))/(kzml)
f2m Ef?am Ef‘4m =0

For the axial traction problem satisfying vanishing shear stress 7., = 0 at z = (0, /), the expansion in (A.3)
becomes

U(r,z) =Yt (r) (ko)
’";1 (A.10)
ws(r,z) = Zwms(r) sin(k,,z), ko = mn/l

(A.9)

<

The boundary conditions are

Tros (1, 2) = 0
(A.7a)
Ors(tpy2) = pr(H(z —2,) — H(z — zp))

Grrs(Fo0y2) = Tyus(r0,2) =0 (A.7b)

p- is a uniform axial traction applied at » = r, in the interval z, <z < z,. Expressions for displacements and
stresses resemble those of the radial problem and are omitted here for shortness.

Appendix B. Modal analysis

The dynamic solution uy(r,z, ) satisfies the homogeneous boundary conditions

O (rps2,t) =0,  T(rp,z,1) =0

0 (Foy2,8) =0, 7.(ro,2,8),= 0 (B.1)
Substituting (16a) and (16d) in (B.1) yields the matrix equation

M,.C=0 (B.2)
M, is a 4x4 square matrix, C = {C}, C,, C3, C4}T is the vector of unknown coefficients and

Mo = —((+ 200K + A2V (kery) + 2002 (kery) (ko)

M3 = 2uksk.[Jo(kgry) — Jy(korp) [ (o)) (B.3)

MeZl = _Z,ukeszl (kerp)

Moy = —p(k] — k)1 (k)
M1, Moy, Moy, Mg have the same form as M.y, M3, M1, M,y; with J, replaced by Y,. Similarly, M.,
M.y k = 1,4 have the same form as M., M. k = 1,4, with r, replaced by #,. From the definitions of k. and
ky in (12), k, is imaginary when o < k.cq, ca = /(4 + 2p)/p, and k; is imaginary when o < k¢, ¢s = \/pt/p.
Below these cut-off frequencies, J, and Y, are replaced by /, and K, with appropriate changes in sign. For
each m in k,, a non- trivial solution to (B.2) yields the implicit eigenvalue problem

det [Man] = 0 = {@ny; @py(r,2)} (B.4)

{@ny; @,;(r,z)} is the eigen-dyad corresponding to the mth axial wave-number.
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Appendix C. Plane-strain problem

The radial plane-strain problem is that of an infinite hollow cylinder where ¢, = w = 0, = 0. The dy-
namic equation in u then reduces to

%%u =1/c0mu, r,<r<r,
@%E@W—kl/r@,—l/rz, 2 =E,/p (C.1)
E, = E(1—)/((1+v)(1 - 2v))
The boundary conditions are
u(rp, t) = f,(t), 0n(ro,t) =0 (C2)
J»(¢) is the time dependent displacement profile prescribed at » = r,,. The constitutive law takes the form
0 = A&y + 2uey, i — rr, 00,2z (C30)
&y = & + &p, &z = 0
o, =E.(0,u+v/(1 —v)u/r)
ago = E.(u/r +v/(1 —v)0,u) (C.3b)
0. =E,(u/r+0u)v/(1 —v)

Express u(r, ) as a superposition of a static and a dynamic solution

u(r,t) = u,(r)f,(t) + ua(r, 1) (C4)
us(r) is the static solution satisfying the inhomogeneous boundary conditions
uS(rp) =1, O-rrs(ro) =0 (CS)

ug(r,t) is the dynamic solution satisfying the homogeneous form of boundary conditions (C.2). Expand
uq(r,t) in the eigenfunctions ¢;(r) of (C.1)

wlr0) = S a(t),()

C.6
@,(r) = Ji(kyr) + cxYi(kyr), 2 = =Ji(kyry) /Y1 (kiyr) o
Substituting (C.6) in the homogeneous form of (C.2) yields the dispersion relation
o0y — o021 =0
an = Ji(kyrp), o2 = Yi(kyrp) )

w1 = (4+ 2ﬂ)krj']1l(krjr0) + A1 (ko) /7o

an = (4 + 2wk, Y| (k;ro) + 2Yi(kyro) /7o
()’ stands for derivative with respect to the argument. (C.7) determines the wave numbers k,;. The static
solution to Viu, =0 is

u,(r)y=Ar+B/r
2 231 (C.8)
A=ry(r, + (A +wr; /1), B=ry(1—A4r)

The constitutive law is given by (C.3b). Substituting (C.6) and (C.8) in (C.4) and enforcing orthogonality of
@;(r) yields
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. 2 y;
a;(t) + wia;(t) = —(Noy/Nj)fp(t)

ro To C9
ij:/ (p];(r)rdr, N,,~:/ 1,{3(7’)(/)j(r)rdr7 w; = caky; (C9)

(+) stands for time derivative. The integrals in N;; and N,; are evaluated analytically in terms of J, and Y, for
n=0,1,2.
For the radial plane-stress problem, o, = w = 0, = 0 yielding the equation

ﬁfu = l/ciat,u, 6% =0, +1/ro, —1/17

C.10
E=Ef(p(1 - V), r<r<n (10

(C.10) has the same form as (C.1) but with a lower speed of propagation since ¢,/cq = (1 — 2v)1/ 2/(1—v)is
small when v is close to 1/2. The constitutive law simplifies to
0, =E;(0,u+vu/r), e = E,(u/r+ vou)

6.=0, E,=E/(1-) (C.11)

If prescribed displacement at » = r,, is the same for both plane stress and plane strain, then strains are
approximately the same. It follows that stresses in (C.11) are smaller than those in (C.3b) by a factor of
(¢s/ca)*. In the present application, if material of the cylinder fails radially within the footprint z, <z <z,
then the approximate state of plane-strain changes to that of plane-stress reducing transmitted pressure
substantially.

Appendix D. Pure shear problem

For the pure shear problem, a,. = oy9 = 0.. = u = 0 yielding the equation

@éw =1/cw @é =0, + 1/ro,

2 :E/(Zps(llik;)), r < <1y (D-12)

w(rp, 1) = fp(t),  T=(ro,1) =0 (D.1b)

T.(r,t) = E/(2(1 4+ v))0,w(r, 1) (D.1Ic)
Express w as a superposition of a static and a dynamic solution

w(r,t) = ws(r)f,(t) +wa(r, 1) (D.2a)

Vime =0, wy(rp) =1, 1) =0 (D.2b)

Viwa = 1/20wa,  walrp,t) =0,  Tpa(ro, 1) = 0 (D.2¢)

Since (D.2b) admits a rigid body motion, a body-force b, is subtracted from (D.2b) so as to equilibrate the
external shear traction and b,f, () is added to (D.2c) to cancel its effect. This yields
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@éws = —bf
o2 242 (D.3)
Viwa = 1/Csattwd + bffp(t)
The solution to w; satisfying the boundary conditions (D.2b) is
ws(r) = (2riInr —7?)/(2r2 Inr, — rﬁ)
E (r2—1%)
=) =) @) — A (D4)
by =2/(ryInr, —1p/2)
Expand wy in terms of its eigenfunctions ¢,(r)
wa(r,0) =Y ai(0)g,(r)
J (D.5)

@;(r) = Jolkygr) = (Jo(kyyrp) /Yo (krrp)) Yo (kijr)

Substituting (D.2a) in (D.la) using (D.3) and (D.5) and enforcing the orthogonality of ¢;(r) produces
uncoupled equations in a;(t)

(1) + w3a;(t) = =(Nag/Nij) f () = Ny /Nyy)3by (1)

Yo Yo Yo ) (D6)
N, :/ @, (rws(r)rdr, Ny, :/ @, (r)rdr, Ny :/ (,/)j(r)rdr
p p &)
(+) is time derivative and w; are roots of the dispersion relation
Jolkijr) Yo (Kiyro) — Jo(kiro) Yo(kijry) = 0, kyy = /e (D.7)

() is derivative with respect to the argument.
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