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Wave propagation in a hollow cylinder due to
prescribed velocity at the boundary
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Abstract

Analyzed is transient response of a hollow cylinder to time dependent radial and axial velocities prescribed at the

cylinder’s inner boundary. Modal and static solutions are superimposed for solving transient response. Axial depen-

dence is expressed by two orthogonal sets of periodic functions; one set satisfies vanishing axial stress at the cylinder

ends and applies to the radial traction problem, and the other set satisfies vanishing shear stress at the ends and applies

to the axial traction problem. The mixed boundary value problem with velocity prescribed over part of the boundary

and vanishing stress prescribed over the remaining part is analyzed by the method of influence coefficients. This method

superimposes response from several external annular traction segments of unit intensity with time dependent weights

yielding a combined response equal to the prescribed instantaneous velocity.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Trauma in human organs from projectile penetration is caused by two mechanisms:

i(i) Tissue damage along projectile path. This interaction is hydrodynamic in nature where inertial and fric-
tional forces dominate the projectile’s motion as it decelerates and eventually stops.

(ii) Stress waves generated at the cylindrical interface between projectile and tissue from radial and axial

velocities prescribed by the projectiles during penetration. These waves radiate to neighboring tissue

and organs causing further damage.

The present analysis concerns mechanism (ii) above.
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As the projectile penetrates into tissue, it moves material by replacing it with its own volume. When

the material fails, it acts more like a fluid, lessening the amount of material being compressed. In the

radial direction, material is compressed by an expanding cross-section of the projectile’s smoothly

curved nose. As long as the projectile’s speed is much smaller than the speed of stress waves in the
material, the moving projectile can be approximated by radial and axial velocities prescribed along its

boundary. For a projectile speed of 330 ft/s and a dilatational speed in tissue material of 5600 ft/s, this

approximation is valid.

Dynamic response of solid and hollow elastic cylinders has been studied extensively in the literature as it

applies to a variety of engineering and science problems. A large body of references concerns sound

scattering by elastic cylinders in the frequency domain. Among these are Stanton (1988), Honarvar and

Sinclair (1996), Bao et al. (1997), Wang and Ying (2001). Stepanishen and Janus (1990) treat transient

radiation and scattering from fluid loaded cylinders. Frequency response of cylinders is analyzed by
Grinchenko and Meleshko (1978), Batard and Quentin (1992), and Grinchenko (1999). Soldatos and Ye

(1994) treat anisotropic laminated cylinders, and Hussein and Heyliger (1998) consider layered piezoelectric

cylinders. Cheung et al. (2003) analyze the 3-D vibration of solid and hollow cylinders by the Chebyshev–

Ritz method. Very few references discuss transient response of elastic cylinders. Paul and Murali (1995)

determine the axisymmetric dynamic response of poro-elastic cylinders. Soldatos (1994) presents a com-

pilation of more than 150 references on frequency response of solid and annular elastic cylinders, yet not a

single one addresses transient response. Yin and Yue (2002) solve the transient plane-strain response from

impulse of infinite length multi-layered cylinders. From the list above, this is the only reference relevant to a
special case of the present analysis.

The influenced region is simulated by tissue material in the shape of a hollow cylinder. Let ðr; zÞ be radial
and axial coordinates with origin at one end of the cylinder axis. The inner cylinder radius rp is that of the
penetrating projectile while its outer radius ro and length l are chosen to include the furthest radial and

axial locations affected by penetration. In a coordinate system ðr; zÞ centered at one end of the finite cyl-

inder, the projectile lies in the interval za 6 z6 zb such that zb � za ¼ lp where lp is projectile length. The

tissue material is linear visco-elastic with a constitutive law that includes first temporal derivatives of stress

and strain.
For simplicity and without loss of generality, axial functions satisfying the differential equations and

specific boundary conditions at the two ends of the cylinder z ¼ ð0; lÞ are divided into 2 sets. One set

satisfying vanishing axial stress rzz at z ¼ ð0; lÞ which has radial and axial displacements ðu;wÞ proportional
to ðsinðmpz=lÞ; cosðmpz=lÞÞ belongs to ‘‘problem 1’’, where m is an integer wave number. The other set

satisfying vanishing shear stress srz at z ¼ ð0; lÞ which has ðu;wÞ proportional to ðcosðmpz=lÞ; sinðmpz=lÞÞ
belongs to ‘‘problem 2’’. The first set applies to radial tractions prescribed at the cylindrical footprint r ¼ ro,
za 6 z6 zb while the second set applies to prescribed axial tractions along the same footprint. The fact that

each set satisfies different boundary conditions does not affect transient response until waves reflect from
the axial boundaries. Consequently, one problem is solved for each type of forcing excitation and results are

superimposed if both types of excitation are acting simultaneously.

The form of the forcing function closest to the application is radial and axial velocity prescribed over

part of the inner cylindrical boundary, yet this leads to a mixed boundary condition. This difficulty can be

overcome by superimposing response from a set of unit radial or axial tractions with time dependent

weights prescribed on annular portions of the inner boundary. These weights are updated at each time step

using the condition that combined velocity response at the center of each annular portion equals the

prescribed instantaneous velocity. In this way, the forcing function is converted to pure radial or axial
traction with time varying spatial dependence.

Section 2 derives frequency and transient response of the hollow cylinder with finite length. Section 3

presents stress histories from prescribed radial and axial pressures and velocities at the inner

boundary.
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1.1. Elastic analysis

In the analysis to follow, all subscripts will denote components and not partial derivatives. In cylindrical

coordinates, the elastodynamic equations are
lr2uþ ðkþ lÞrðr � uÞ ¼ qottu

r2 � orr þ 1=ror þ 1=r2ohh þ ozz

r � ð1=rorrÞer þ ð1=rohÞeh þ ðozÞez
ð1Þ
ðr; h; zÞ are radial, circumferential and axial independent variables, u ¼ fu; v;wgT is displacement vector

along these directions, ðk; lÞ are Lame constants, q is mass density and t is time. Re-write (1) as
lr2uþ ðkþ 2lÞrðr � uÞ � lrðr � uÞ ¼ qottu ð2aÞ
Noting that
lr2u� lrðr � uÞ ¼ �lr�r� u ð2bÞ
permits casting (1) in the form
ðkþ 2lÞrðr � uÞ � lr�r� u ¼ qottu ð3Þ
Define dilatation D and rotation vector w as
D ¼ r � u; w ¼ r� u ð4Þ
Substituting (4) in (3) yields (Love, 1944)
ðkþ 2lÞrD� lr� w ¼ qottu ð5Þ
Taking the divergence of (5) noting that r � ðr � wÞ ¼ 0 yields
ðkþ 2lÞr2D ¼ qDtt ð6Þ
Taking the rotation of (5) noting that r� ðrDÞ ¼ 0 yields
lr2w ¼ qwtt ð7Þ
For axisymmetric motions, v � oh � 0 and wr � wz � 0 reducing (6) and (7) to
ðkþ 2lÞr2
0D ¼ qDtt

lr2
1wh ¼ qwh;tt

r2
n � orr þ 1=ror � n2=r2 þ ozz; n ¼ 0; 1

ð8Þ
Expressing (4) in terms of u yields
D ¼ 1=rorðruÞ þ ozw

wh ¼ ozu� orw
ð9Þ
Decoupling u and w in (9) produces
r2
1u ¼ orDþ ozwh

r2
0w ¼ ozD� 1=rorðrwhÞ

ð10Þ
For the radial ‘‘problem 1’’ satisfying rzz ¼ 0 at z ¼ ð0; lÞ, harmonic motions in time with radian frequency

x and simply supported boundaries at z ¼ ð0; lÞ yields the separated solution
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fDðr; z; tÞ;whðr; z; tÞg
T ¼ fDðrÞ cosðkzzÞ;whðrÞ sinðkzzÞg

T
eixt

fuðr; z; tÞ;wðr; z; tÞgT ¼ f�uðrÞ sinðkzzÞ; �wðrÞ cosðkzzÞgTeixt
ð11Þ
i ¼
ffiffiffiffiffiffiffi
�1

p
and kz ¼ mp=l where m is an integer axial wave number. The z dependence in (11) yields

u ¼ rzz ¼ 0 at the cylinder ends z ¼ 0; l. For real ke and ks, Eq. (8) admits the solution
DðrÞ ¼ C1J0ðkerÞ þ C2Y0ðkerÞ
�whðrÞ ¼ C3J1ðksrÞ þ C4Y1ðksrÞ

ð12Þ

k2e ¼ x2=c2d � k2z ; c2d ¼ ðkþ 2lÞ=q

k2s ¼ x2=c2s � k2z ; c2s ¼ l=q
Jn and Yn are Bessel functions and cd; cs are dilatational and shear speeds of sound. If either ke or ks is
imaginary, Jn and Yn in (12) are replaced by the modified Bessel functions In and Kn with appropriate
changes in sign. Substituting (11) and (12) in (10) then solving for �uðrÞ and �wðrÞ yields
�uðrÞ ¼ �keðC1J1ðkerÞ þ C2Y1ðkerÞÞ þ kzðC3J1ðksrÞ þ C4Y1ðksrÞÞ
�wðrÞ ¼ kzðC1J0ðkerÞ þ C2Y0ðkerÞÞ þ ksðC3J0ðksrÞ þ C4Y0ðksrÞÞ

ð13Þ
In cylindrical coordinates, the constitutive relations are
rrr ¼ kDþ 2loru; rhh ¼ kDþ 2lu=r

rzz ¼ kDþ 2lozw; srz ¼ lðozuþ orwÞ
D ¼ oruþ u=r þ ozw

ð14Þ
For ‘‘problem 1’’, harmonic motions in time and simply supported boundaries at ð0; lÞ yield the separated

relations
rrr

rhh

rzz

srz

8>><>>:
9>>=>>;ðr; z; tÞ ¼

�rrrðrÞ sinðkzzÞ
�rhhðrÞ sinðkzzÞ
�rzzðrÞ sinðkzzÞ
�srzðrÞ cosðkzzÞ

8>><>>:
9>>=>>;eixt ð15aÞ
Boundary conditions at r ¼ rp and r ¼ ro are
rrrðrp; z; tÞ ¼ prðtÞ½Hðz� zaÞ � Hðz� zbÞ�
srzðrp; z; tÞ ¼ 0

rrrðro; z; tÞ � srzðro; z; tÞ ¼ 0

ð15bÞ
prðtÞ is a time dependent uniform radial traction acting on the inner cylindrical boundary r ¼ rp in the

interval za 6 z6 zb. The z dependence in (15a) yields u ¼ rzz ¼ 0 at the cylinder ends z ¼ 0; l. Substituting
(11), (13) and (15a) in (14) yields
�rrrðrÞ ¼
�
� ðk
�

þ 2lÞk2e þ kk2z
�
J0ðkerÞ þ 2lk2e J1ðkerÞ=ðkerÞ

�
C1

þ
�
� ðk
�

þ 2lÞk2e þ kk2z
�
Y0ðkerÞ þ 2lk2e Y1ðkerÞ=ðkerÞ

�
C2

þ 2lkskz½J0ðksrÞ � J1ðksrÞ=ðksrÞ�C3 þ 2lkskz½Y0ðksrÞ � Y1ðksrÞ=ðksrÞ�C4 ð16aÞ

�rhhðrÞ ¼ � kðk2z
�

þ k2e ÞJ0ðkerÞ þ 2lk2e J1ðkerÞ=ðkerÞ
�
C1

� kðk2z
�

þ k2e ÞY0ðkerÞ þ 2lk2e Y1ðkerÞ=ðkerÞ
�
C2 þ 2lkskz½C3J1ðksrÞ þ C4Y1ðksrÞ�=ðksrÞ ð16bÞ
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�rzzðrÞ ¼ � ðk
�

þ 2lÞk2z þ kk2e
�
½C1J0ðkerÞ þ C2Y0ðkerÞ� � 2lkskz½C3J0ðksrÞ þ C4Y0ðksrÞ� ð16cÞ

�srzðrÞ ¼ �2lkekz½C1J1ðkerÞ þ C2Y1ðkerÞ� � lðk2s � k2z Þ½C3J1ðksrÞ þ C4Y1ðksrÞ� ð16dÞ
Since rzz is proportional to sinðkzzÞ in (15), it vanishes at z ¼ 0; l. This allows a rigid body motion

wðr; z; tÞ ¼ woðtÞ when external traction acts along z. To avoid the rigid body motion, an additional axial

functional dependence is considered for ‘‘problem 2’’
u

w

� �
ðr; z; tÞ ¼

�uðrÞ cosðkzzÞ
�wðrÞ sinðkzzÞ

( )
eixt

rrr

rhh

rzz

srz

8>>><>>>:
9>>>=>>>;ðr; z; tÞ ¼

�rrrðrÞ cosðkzzÞ
�rhhðrÞ cosðkzzÞ
�rzzðrÞ cosðkzzÞ
�srzðrÞ sinðkzzÞ

8>>>><>>>>:

9>>>>=>>>>;eixt

ð17aÞ
that satisfies the following boundary conditions at r ¼ rp and r ¼ ro
rrrðrp; z; tÞ ¼ 0

srzðrp; z; tÞ ¼ pzðtÞ½Hðz� zaÞ � Hðz� zbÞ�
rrrðro; z; tÞ � srzðro; z; tÞ ¼ 0

ð17bÞ
pzðtÞ is a time dependent uniform axial traction acting on the inner cylindrical boundary r ¼ rp in the

interval za 6 z6 zb. The z dependence in (18a) yields w ¼ srz ¼ 0 at the cylinder ends z ¼ 0; l. In the analysis

to follow, superscripts (1) and (2) will denote radial and axial problems respectively. Derivations for

problem (2) follow the same steps as those for problem (1) and are omitted here for shortness. Although

conditions at the boundaries z ¼ 0; l of each problems are different, they do not affect the transient response

at times preceding reflection of waves from these boundaries.
Divide the cylindrical surface fr ¼ rp; za 6 z6 zbg into nþ 1 equidistant ring stations with increment Dzp
z1; z2; z3; . . . ; zn; zl � zl�1 ¼ Dzp ¼ const

zl ¼ za þ ðl� 1ÞDzp
ð18Þ
Assume a uniform pressure of unit intensity to act over each ring segment zl�1 ! zl. The elasto-dynamic

solution to the kth ring pressure segment is outlined below.

For each pressure segment, expand each dependent variable in terms of eigenfunctions that satisfy

homogeneous boundary conditions. Express total displacement ukðr; z; tÞ as a superposition of two terms
u
ð1;2Þ
k ðr; z; tÞ ¼ u

ð1;2Þ
sk ðr; zÞfpðtÞ þ u

ð1;2Þ
dk ðr; z; tÞ ð19Þ
u
ð1;2Þ
sk ðr; zÞ is static displacement vector satisfying (2a) when time derivative vanishes (Appendix A),

u
ð1;2Þ
dk ðr; z; tÞ is dynamic displacement vector satisfying the dynamic equation of motion (2a), and fpðtÞ is time

dependence of the forcing pressure. For each axial wave number m, express uð1;2Þdk ðr; z; tÞ in the eigenfunctions

Uð1;2Þ
mj ðr; zÞ (Appendix B)
u
ð1;2Þ
dk ðr; z; tÞ ¼

X
j

X
m

að1;2Þmjk ðtÞU
ð1;2Þ
mj ðr; zÞ ð20Þ
að1;2Þmjk ðtÞ is a generalized coordinate of the jth eigenfunction with m axial half waves from the kth pressure

segment. Substituting (19) and (20) in (2a) and enforcing orthogonality of Uð1;2Þ
mj ðr; zÞ yields uncoupled

equations in að1;2Þmjk ðtÞ. For an undamped elastic cylinder the equation governing að1;2Þmjk ðtÞ is
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d2

dt2

�
þ x2

mj

	
að1;2Þmjk ðtÞ ¼ �f ð1;2Þ

mjk ðtÞ ð21aÞ

�f ð1;2Þ
mjk ðtÞ ¼ N ð1;2Þ

amjk
€fpðtÞ=Nmj

N ð1;2Þ
mj ¼

Z rd

0

Z h

0

Uð1;2Þ
mj ðr; zÞ �Uð1;2Þ

mj ðr; zÞdz rdr

N ð1;2Þ
amjk ¼

Z rd

0

Z h

0

u
ð1;2Þ
sk ðr; zÞ �Uð1;2Þ

mj ðr; zÞdz rdr

ð21bÞ
xmj is the resonant frequency. The solution to (21a) takes the form
að1;2Þmjk ðtÞ ¼ � 1

xmj

Z t

0

sinxmjðt � sÞ�f ð1;2Þ
mjk ðsÞds ð22Þ
Evaluating radial and axial displacements ukðr; z; tÞ for problem (1) and wkðr; z; tÞ for problem (2) from the
kth pressure segment at each central point zcl ¼ ðzl þ zl�1Þ=2 of a pressure segment yields coefficients of the

influence matrices
UlkðtÞ ¼
X
j

X
m

að1ÞmjkðtÞ�u
ð1Þ
mjkðrp; zclÞ þ uð1Þsk ðrp; zclÞfpðtÞ

WlkðtÞ ¼
X
j

X
m

að2ÞmjkðtÞ�w
ð2Þ
mjkðrp; zclÞ þ wð2Þ

sk ðrp; zclÞfpðtÞ
ð23Þ
f�uð1Þmjkðrp; zclÞ, �w
ð2Þ
mjkðrp; zclÞg and fuð1Þsk ðrp; zclÞ, w

ð2Þ
sk ðrp; zclÞg are modal and static displacement dyads at zcl from

the kth pressure segment in problems (1) and (2) respectively. In (21) and (23) fpðtÞ is a first approximation

to the time dependence of the applied pressure. One approximation is determined from the plane- strain

state when axial length of cylinder and footprint approaches infinity (Appendix C). Enforcing the condition

of prescribed displacements uð1Þp ðtÞ and wð2Þ
p ðtÞ at each time step yields a set of simultaneous equations in the

weights pð1Þk and pð2Þk
Xn

k¼1

UlkðtÞpð1Þk ðtÞ ¼ uð1Þp ðtÞ; l ¼ 1; . . . ; n

Xn

k¼1

WlkðtÞpð2Þk ðtÞ ¼ wð2Þ
p ðtÞ; l ¼ 1; . . . ; n

ð24Þ
In what follows, superscripts (1,2) are dropped for shortness. For an elastic material, eigenvalues and

resonant frequencies are synonymous. In this case, the eigenvalues appear in pairs xmj and �xmj. Con-

sequently Eq. (22a) takes the form
d

dt

�
� ixmj

	
d

dt

�
þ ixmj

	
amjkðtÞ ¼ �fmjkðtÞ ð25aÞ

�fmjkðtÞ ¼ Namjk
€fpðtÞ=Nmj

Namjk ¼
Z l

0

Z ro

rp

uskðr; zÞ �Umjðx; zÞrdrdz

Nmj ¼
Z l

0

Z ro

rp

Umjðr; zÞ �Umjðr; zÞrdrdz

ð25bÞ
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1.2. Visco-elastic analysis

For a visco-elastic material, xmj and Umjðr; zÞ in (25) are both complex
xmj ¼ xmRj þ ixmIj ð26aÞ

Nmj ¼
Z l

0

Z ro

rp

Umjðr; zÞ �U�
mjðr; zÞrdrdz ð26bÞ
U�
mjðr; zÞ is the complex conjugate of the eigenfunction. Unlike the elastic case where for each eigenfunction

the eigenvalue pair is þxmj and �xmj, in the visco-elastic case the pair is þxmj and �x�
mj where ð Þ� stands

for complex conjugate. This means that x1mj ¼ xRmj þ ixImj and x2mj ¼ �xRmj þ ixImj. The reason xImj

retains the same sign for both solutions is that xImj is a measure of damping which reduces amplitude

whether the real part is þxRmj or �xRmj. Consequently Eq. (21a) takes the form
d

dt

�
� ixmj

	
d

dt

�
þ ix�

mj

	
amjkðtÞ ¼ �fmjkðtÞ )

d2

dt2



þ iðx�

mj � xmjÞ
d

dt
þ xmjx

�
mj

�
amjkðtÞ ¼ �fmjkðtÞ ð27Þ
Noting that iðx�
mj � xmjÞ ¼ 2xImj and xmjx�

mj ¼ x2
Rmj þ x2

Imj, (27) simplifies to
d2

dt2



þ 2xImj

d

dt
þ x2

Rmj þ x2
Imj

�
amjkðtÞ ¼ �fmjkðtÞ ð28Þ
Clearly, xImj acts as a velocity proportional viscous damper. Rewriting (28) in standard form:
d2

dt2



þ 2fmj �xmj

d

dt
þ �x2

mj

�
amjkðtÞ ¼ �fmjkðtÞ; fmj ¼

xImj

�xmj
; �xmj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

Rmj þ x2
Imj

q
ð29Þ
yields a solution in terms of a Duhamel integral:
amjkðtÞ ¼ � 1

x̂mj

Z t

0

e�fmj �xmjðt�sÞ sin x̂mjðt � sÞ�fmjkðsÞds

x̂mj ¼ �xmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2mj

q ð30Þ
The general constitutive law for a linear viscoelastic material takes the form (see Fung (1965, pp. 416–418))
XNe

n¼0

sen
onr
otn

¼ Eo

XNr

n¼0

srn
one
otn

; sr0 ¼ se0 ¼ 1 ð31Þ
srn, sen are constants and Eo is a modulus. For a sinusoidal time dependence, (31) assumes the form of a
Pad�e series
r ¼ bsðNr;Ne;xÞEoe

bsðNr;Ne;xÞ ¼
XNr

n¼0

srnðixÞn
XNe

n¼0

senðixÞn
,

ð32Þ
bsðNr;Ne;xÞ is a complex valued function of x. The simplest linear visco-elastic solid limits Nr and Ne to 1
reducing (32) to
r ¼ ð1þ sr1ixÞ
ð1þ se1ixÞ

Eoe � bsð1; 1;xÞEoe ð33Þ
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For the constitutive law in (33), approximations to xR and xI in (26a) are
Table

Cylind

E (l

q (lb

v
l (in
rp (i

ro (i

cd (

cs (i
xR � xo b1=2
s ð1; 1;xcoÞ

�� ��; xI � xoIm b1=2
s ð1; 1;xcoÞ


 �
xco ¼ xRo þ ixIo ¼ xo b1=2

s ð1; 1;xoÞ
�� ��h

þ iIm b1=2
s ð1; 1;xoÞ


 �i ð34Þ
xo is the eigenfrequency of the linear elastic problem.
2. Results

In all results to follow, geometric and material properties of the cylinder are listed in Table 1. Fig. 1(a1)

plots the static deformed generator from a unit radial displacement prescribed at the footprint
usoðrp; zÞ ¼ Hðz� zaÞ � Hðz� zbÞ ð35aÞ
In (35a) za ¼ 1:500 and zb ¼ 2:500. The resulting normalized rrrsðrp; zÞ distribution plotted in Fig. 1(b1) shows

a rise near za and zb of 1.5 times its magnitude at the plateau. Fig. 1(a2) and (b2) plot static deformed

generator and normalized rrrsðrp; zÞ distribution for a unit axial displacement prescribed at the footprint
wsoðrp; zÞ ¼ Hðz� zaÞ � Hðz� zbÞ ð35bÞ
In this case, rrrs rises near za and zb to 1.7 times its magnitude at the plateau.

Fig. 2(a) and (b) plots resonant frequency X in Hertz versus m with kr as parameter for the two problems.

The two spectra are almost identical for all m and kr.
In Eq. (23), influence coefficients Ulk and Wlk require an approximation to the time dependence of the

forcing pressure fpðtÞ. One approximation is determined from the plane-strain state when axial length of
cylinder and footprint approaches infinity (Appendix C). Fig. 3(a)–(d) plot histories of the plane-strain

problem when a constant velocity Uo ¼ 330 m/s is prescribed at r ¼ rp. There, u history shown as solid line

in Fig. 3(a) reproduces the prescribed uo profile. At r ¼ 2rp and r ¼ 4rp, u histories exhibit the time-delay in

wave front from propagation with finite speed ce. The closeness in magnitude of peak rrr, rhh and rzz (Fig.

3(b)–(d)) implies a hydrodynamic state of stress. Geometric stress attenuation along r is proportional to

r�1=2.

The rrrðrpÞ plane-strain history in Fig. 3(b) serves as the approximation to fpðtÞ in the 3-D axisymmetric

model as it is the limit when projectile and cylinder lengths are the same. Fig. 4(a1)–(d1) plots histories from
the prescribed uniform pressure profile fpðtÞ at the center of the footprint z ¼ 200. The u history in Fig. 4(a1)

does not follow the prescribed uo profile because applied pressure is uniform over the footprint. Applying

the influence method of Section 2 yields the histories in Fig. 4(a2)–(d2). The uðrpÞ history in Fig. 4(a2)

matches the prescribed uo profile. At the footprint, except for the higher stress peaks, results from pre-

scribed velocity agree with those from the prescribed plane-strain pressure profile fpðtÞ. At r > rp, results
1

er properties

b=in2) 4.5 · 104
s2=in4) 8.7 · 10�5

0.48

) 4

n) 0.25

n) 3

in/s) 6.74· 104
n/s) 1.322· 104
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Fig. 1. Static deformation and foot-print traction at r ¼ rp, za < z < zb (a1), (b1) prescribed uðrp; zÞ, (a2), (b2) prescribed wðrp; zÞ.
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Fig. 4. Histories from radial excitation at z ¼ 200 (––) r ¼ rp, (- - -) r ¼ 2rp, (– – –) r ¼ 4rp; (a1), (b1), (c1), (d1) prescribed pressure from

plane-strain (a2), (b2), (c2), (d2) prescribed velocity.
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from the two forcing methods coincide implying that the plane-strain pressure profile is a good approxi-
mation to the actual profile determined by the influence method. Geometric stress attenuation along r is

proportional to r�3=4. Fig. 5(a)–(d) plots histories from prescribed velocity remote from the footprint at

z ¼ 2:600. There, peak normal stresses are 1/5 those under the footprint (see Fig. 4(b2), (c2) and (d2)). This

steep drop in stress across the edges of the footprint is caused by the low shear rigidity of the material

consistent with the ratio cs=cd ’ 1=5 from Table 1.

Fig. 6 plots instantaneous rrrðrp; z; t0Þ distributions for 2 ls 6 t0 6 12 ls in intervals of 2 ls. For t0 ¼ 2

ls, the distribution is parabolic with a maximum at the center of the footprint. As time increases, the

distribution becomes flatter then develops peaks near za and zb resembling the static case in Fig. 1(b1). The
step-like shape of the distribution is an artifact of the finite number of pressure ring segments dividing

the footprint. In Fig. 6, the 8 steps correspond to 8 ring segments. The distribution becomes smoother as

number of ring segments increases.

For an axial prescribed velocity at r ¼ rp along za 6 z6 zb, the approximation to fpðtÞ is determined from

the solution of the pure-shear problem of an infinite cylinder with axial velocity prescribed at r ¼ rp derived
in Appendix D. Fig. 7(a) and (b) plots histories of w and srz for the case of pure shear. Since cs=cd ¼ 1=5, the
time range in these histories is extended to 40 ls to allow for the longer arrival time at stations remote from
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the footprint. The srz profile in Fig. 7(b) is then used as an approximation fpðtÞ in computing histories with

prescribed velocity.
Fig. 8(a1) and (b1) plots histories at the center of the footprint z ¼ 200 from a uniform srzoðrp; z; tÞ ¼ fpðtÞ

prescribed over the footprint. Fig. 8(a1) shows that otw is the same as prescribed velocity U0 ¼ 330 ft/s till

t ¼ 10 ls, then diminishes to 200 ft/s near t ¼ 40 ls. On the other hand for prescribed velocity, otw in Fig.

8(b2) is constant for all times and equals Uo. Magnitude of srz in Fig. 8(b2) is higher than that in Fig. 8(b1)

by approximately a factor of 1.3.
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Fig. 9. Histories from axial excitation at z ¼ 2:600 (––) r ¼ rp, (- - -) r ¼ 1:6rp, (– – –) r ¼ 2:2rp; (a1) w, (b1) rrr, (c1) rzz, (d1) srz prescribed
pressure from pure-shear; (a2) w, (b2) rrr, (c2) rzz, (d2) srz prescribed velocity.
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Remote from the footprint at z ¼ 2:600, histories with prescribed pressure (Fig. 9(a1)–(d1)) are compared

to those with prescribed velocity (Fig. 9(a2)–(d2)). In Fig. 9(a1)–(d1) all variables are approximately half

the corresponding variables in Fig. 9(a2)–(d2). Fig. 10 plots srz distribution along the footprint. For t0 < 10

ls, srz’s distribution is uniform. As time increases, srz rises steeply near the edges of the footprint reaching a

value double its value at the center at t0 � 40 ls.
3. Conclusion

Wave propagation in a hollow cylinder is analyzed for pressure and velocity prescribed at its inner

boundary. The difficulty arising from the mixed boundary conditions is overcome by the influence coeffi-

cient method. An approximation to the prescribed pressure profile needed in this method is determined

from the plane-strain solution. Noteworthy results are

(1) The stress state close to impact is almost hydrodynamic.

(2) Results from prescribed radial velocity agree with those from prescribed uniform pressure determined

from the plane-strain model.

(3) In the plane-strain model, stress attenuation along r follows r�1=2 while in the 3-D axisymmetric model

it follows r�3=4.

(4) For prescribed radial velocity, the instantaneous rrr distribution is parabolic soon after impact, and ap-

proaches the static distribution for large times.

(5) Near the center of the footprint, results from prescribed axial velocity agree with those from prescribed
uniform shear stress determined from the pure-shear model. However, near the edges of the footprint,

stresses from prescribed pressure are half of those from prescribed velocity because in the later srz rises
near the edges by the same factor.

Appendix A. Static problem

In what follows, all dependent variables pertaining to the static solution will be subscripted by s. The

static axisymmetric equations in terms of displacements are
ðk



þ 2lÞ br2
1 þ lozz

�
us þ ðkþ lÞorzws ¼ 0

ðkþ lÞozðor þ 1=rÞus þ ðl br2
0 þ ðkþ 2lÞozzÞws ¼ 0br2

n � orr þ 1=ror � n2=r2; n ¼ 0; 1

ðA:1Þ
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Eq. (A.1) decouple to
lðkþ 2lÞð br2
1 þ ozzÞ2us ¼ 0

lðkþ 2lÞð br2
0 þ ozzÞ2ws ¼ 0

ðA:2Þ
For the radial traction problem satisfying rzzs ¼ 0 at z ¼ ð0; lÞ, separation of variables follows Eq. (11) in

the text. Summing over all kz yields
usðr; zÞ ¼
XM
m¼1

�umsðrÞ sinðkzmzÞ ðA:3aÞ

wsðr; zÞ ¼
XM
m¼1

�wmsðrÞ cosðkzmzÞ; kzm ¼ mp=l ðA:3bÞ
Substituting (A.3) in (A.2) produces uncoupled equations in r for each kzm
ð br2
1 � k2zmÞ

2�umsðrÞ ¼ 0

ð br2
0 � k2zmÞ

2�wmsðrÞ ¼ 0
ðA:4Þ
In what follows, subscript m will be dropped for shortness. Eq. (A.4) admit the solutions
�usðrÞ ¼ C1I1ðkzrÞ þ C2K1ðkzrÞ þ C3ðkzrI0ðkzrÞ � I1ðkzrÞÞ � C4ðkzrK0ðkzrÞ þ K1ðkzrÞÞ ðA:5aÞ

�wsðrÞ ¼ C1I0ðkzrÞ � C2K0ðkzrÞ þ C3ða1I0ðkzrÞ þ kzrI1ðkzrÞÞ þ C4ð�a1K0ðkzrÞ þ kzrK1ðkzrÞÞ
a1 ¼ ðkþ 3lÞ=ðkþ lÞ; a2 ¼ k=ðkþ lÞ

ðA:5bÞ
Substituting (A.5a) and (A.5b) in the constitutive relations (14) and (15a) of the text yields
�rrrsðrÞ ¼ 2lkzðC1ðI0ðkzrÞ � I1ðkzrÞ=ðkzrÞÞ � C2ðK0ðkzrÞ þ K1ðkzrÞ=ðkzrÞÞÞ
þ 2lkzC3ð�a2I0ðkzrÞ þ ð1þ ðkzrÞ2ÞI1ðkzrÞ=ðkzrÞÞ þ 2lkzC4ða2K0ðkzrÞ þ ð1þ ðkzrÞ2ÞK1ðkzrÞ=ðkzrÞÞ

ðA:6aÞ

�rhhsðrÞ ¼ 2lkzðC1I1ðkzrÞ=ðkzrÞ þ C2K1ðkzrÞ=ðkzrÞÞ þ 2lkzC3ðð1� a2ÞI0ðikzrÞ � I1ðkzrÞ=ðkzrÞÞ
þ 2lkzC4ð�ð1� a2ÞK0ðkzrÞ � K1ðkzrÞ=ðkzrÞÞ ðA:6bÞ

�rzzsðrÞ ¼ 2lkzð�C1I0ðkzrÞ þ C2K0ðkzrÞÞ þ 2lkzC3ð�ða1 þ a2ÞI0ðkzrÞ � kzrI1ðkzrÞÞ
þ 2lkzC4ðða1 þ a2ÞK0ðkzrÞ � kzrK1ðkzrÞÞ ðA:6cÞ

�srzsðrÞ ¼ 2lkzðC1I1ðkzrÞ þ C2K1ðkzrÞÞ þ 2lkzC3ðkzrI0ðkzrÞ þ ð1� a2ÞI1ðkzrÞÞ
þ 2lkzC4ð�kzrK0ðkzrÞ þ ð1� a2ÞK1ðkzrÞÞ ðA:6dÞ
Tractions at the inner and outer surfaces of the tube are expressed as
rrrsðrp; zÞ ¼ prðHðz� zaÞ � Hðz� zbÞÞ
srzsðrp; zÞ ¼ 0

ðA:7aÞ

rrrsðro; zÞ � srzsðro; zÞ ¼ 0 ðA:7bÞ

pr is a uniform radial traction prescribed at r ¼ rp in the interval za 6 z6 zb. Substituting (A.6a) and (A.6d)
in (A.7a) and (A.7b) and enforcing orthogonality of sinðkzzÞ and cosðkzzÞ produces M (4 · 4) uncoupled
matrix equations in the coefficients Ckm, k ¼ 1; 4
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McmCm ¼ fm ðA:8Þ

Coefficients of Mcm are the radial functions multiplying Ckm in (A.6a) and (A.6d) evaluated at r ¼ rp and

r ¼ ro, and fm is a vector defined by
f1m ¼ �2prðcosðkzmzbÞ � cosðkzmzaÞÞ=ðkzmlÞ
f2m � f3m � f4m ¼ 0

ðA:9Þ
For the axial traction problem satisfying vanishing shear stress srzs ¼ 0 at z ¼ ð0; lÞ, the expansion in (A.3)

becomes
usðr; zÞ ¼
XM
m¼1

�umsðrÞ cosðkzmzÞ

wsðr; zÞ ¼
XM
m¼1

�wmsðrÞ sinðkzmzÞ; kzm ¼ mp=l

ðA:10Þ
The boundary conditions are
srzsðrp; zÞ ¼ 0

rrrsðrp; zÞ ¼ prðHðz� zaÞ � Hðz� zbÞÞ
ðA:7aÞ

rrrsðro; zÞ � srzsðro; zÞ ¼ 0 ðA:7bÞ

pz is a uniform axial traction applied at r ¼ rp in the interval za 6 z6 zb. Expressions for displacements and

stresses resemble those of the radial problem and are omitted here for shortness.

Appendix B. Modal analysis

The dynamic solution udðr; z; tÞ satisfies the homogeneous boundary conditions
rrrðrp; z; tÞ ¼ 0; srzðrp; z; tÞ ¼ 0

rrrðro; z; tÞ ¼ 0; srzðro; z; tÞ;¼ 0
ðB:1Þ
Substituting (16a) and (16d) in (B.1) yields the matrix equation
MeC ¼ 0 ðB:2Þ

Me is a 4 · 4 square matrix, C ¼ fC1;C2;C3;C4gT is the vector of unknown coefficients and
Me11 ¼ �ððkþ 2lÞk2e þ kk2z ÞJ0ðkerpÞ þ 2lk2e J1ðkerpÞ=ðkerpÞ
Me13 ¼ 2lkskz½J0ðksrpÞ � J1ðksrpÞ=ðksrpÞ�
Me21 ¼ �2lkekzJ1ðkerpÞ
Me23 ¼ �lðk2s � k2z ÞJ1ðksrÞ

ðB:3Þ
Me12, Me14, Me22, Me24 have the same form as Me11, Me13, Me21, Me23 with Jn replaced by Yn. Similarly, Me3k,

Me4k k ¼ 1; 4 have the same form asMe1k,Me2k k ¼ 1; 4, with rp replaced by ro. From the definitions of ke and
ks in (12), ke is imaginary when x < kzcd, cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
, and ks is imaginary when x < kzcs, cs ¼

ffiffiffiffiffiffiffiffi
l=q

p
.

Below these cut-off frequencies, Jn and Yn are replaced by In and Kn with appropriate changes in sign. For

each m in kz, a non- trivial solution to (B.2) yields the implicit eigenvalue problem
det jMemj ¼ 0 ) fxmj;Umjðr; zÞg ðB:4Þ
fxmj;Umjðr; zÞg is the eigen-dyad corresponding to the mth axial wave-number.
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Appendix C. Plane-strain problem

The radial plane-strain problem is that of an infinite hollow cylinder where ezz � w � oz � 0. The dy-

namic equation in u then reduces to
br2
1u ¼ 1=c2eottu; rp 6 r6 robr2
1 � orr þ 1=ror � 1=r2; c2e ¼ Ee=q

Ee ¼ Eð1� mÞ=ðð1þ mÞð1� 2mÞÞ
ðC:1Þ
The boundary conditions are
uðrp; tÞ ¼ fpðtÞ; rrrðro; tÞ ¼ 0 ðC:2Þ
fpðtÞ is the time dependent displacement profile prescribed at r ¼ rp. The constitutive law takes the form
rii ¼ keV þ 2leii; ii ! rr; hh; zz

eV ¼ err þ ehh; ezz � 0
ðC:3aÞ

rrr ¼ Eeðoruþ m=ð1� mÞu=rÞ
rhh ¼ Eeðu=r þ m=ð1� mÞoruÞ
rzz ¼ Eeðu=r þ oruÞm=ð1� mÞ

ðC:3bÞ
Express uðr; tÞ as a superposition of a static and a dynamic solution
uðr; tÞ ¼ usðrÞfpðtÞ þ udðr; tÞ ðC:4Þ
usðrÞ is the static solution satisfying the inhomogeneous boundary conditions
usðrpÞ ¼ 1; rrrsðroÞ ¼ 0 ðC:5Þ
udðr; tÞ is the dynamic solution satisfying the homogeneous form of boundary conditions (C.2). Expand

udðr; tÞ in the eigenfunctions ujðrÞ of (C.1)
udðr; tÞ ¼
X
j

ajðtÞujðrÞ

ujðrÞ ¼ J1ðkrjrÞ þ c2Y1ðkrjrÞ; c2 ¼ �J1ðkrjrpÞ=Y1ðkrjrpÞ
ðC:6Þ
Substituting (C.6) in the homogeneous form of (C.2) yields the dispersion relation
a11a22 � a12a21 ¼ 0

a11 ¼ J1ðkrjrpÞ; a12 ¼ Y1ðkrjrpÞ
a21 ¼ ðkþ 2lÞkrjJ 0

1ðkrjroÞ þ kJ1ðkrjroÞ=ro
a22 ¼ ðkþ 2lÞkrjY 0

1ðkrjroÞ þ kY1ðkrjroÞ=ro

ðC:7Þ
ð Þ0 stands for derivative with respect to the argument. (C.7) determines the wave numbers krj. The static

solution to r2
1us ¼ 0 is
usðrÞ ¼ Ar þ B=r

A ¼ rpðr2p þ ðkþ lÞr2c=lÞ
�1
; B ¼ rpð1� ArpÞ

ðC:8Þ
The constitutive law is given by (C.3b). Substituting (C.6) and (C.8) in (C.4) and enforcing orthogonality of

ujðrÞ yields
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€ajðtÞ þ x2
j ajðtÞ ¼ �ðNaj=NjjÞ€fpðtÞ

Njj ¼
Z ro

rp

u2
j ðrÞrdr; Naj ¼

Z ro

rp

usðrÞujðrÞrdr; xj ¼ cdkrj
ðC:9Þ
ð�Þ stands for time derivative. The integrals in Njj and Naj are evaluated analytically in terms of Jn and Yn for
n ¼ 0; 1; 2.

For the radial plane-stress problem, rzz � w � oz � 0 yielding the equation
br2
1u ¼ 1=c2rottu; br2

1 � orr þ 1=ror � 1=r2

c2r ¼ E=ðqð1� m2ÞÞ; rp 6 r6 rc
ðC:10Þ
(C.10) has the same form as (C.1) but with a lower speed of propagation since cr=cd ¼ ð1� 2mÞ1=2=ð1� mÞ is
small when m is close to 1/2. The constitutive law simplifies to
rrr ¼ Erðoruþ mu=rÞ; rhh ¼ Erðu=r þ moruÞ
rzz ¼ 0; Er ¼ E=ð1� m2Þ

ðC:11Þ
If prescribed displacement at r ¼ rp is the same for both plane stress and plane strain, then strains are

approximately the same. It follows that stresses in (C.11) are smaller than those in (C.3b) by a factor of

ðcr=cdÞ2. In the present application, if material of the cylinder fails radially within the footprint za 6 z6 zb,
then the approximate state of plane-strain changes to that of plane-stress reducing transmitted pressure

substantially.
Appendix D. Pure shear problem

For the pure shear problem, rrr � rhh � rzz � u � 0 yielding the equation
br2
0w ¼ 1=c2so

2
ttw; br2

0 ¼ orr þ 1=ror

c2s ¼ E=ð2qð1þ mÞÞ; rp 6 r6 ro
ðD:1aÞ
wðrp; tÞ ¼ fpðtÞ; srzðro; tÞ ¼ 0 ðD:1bÞ
srzðr; tÞ ¼ E=ð2ð1þ mÞÞorwðr; tÞ ðD:1cÞ
Express w as a superposition of a static and a dynamic solution
wðr; tÞ ¼ wsðrÞfpðtÞ þ wdðr; tÞ ðD:2aÞ
br2
0ws ¼ 0; wsðrpÞ ¼ 1; srzsðroÞ ¼ 0 ðD:2bÞ
br2
0wd ¼ 1=c2sottwd; wdðrp; tÞ ¼ 0; srzdðro; tÞ ¼ 0 ðD:2cÞ
Since (D.2b) admits a rigid body motion, a body-force bf is subtracted from (D.2b) so as to equilibrate the

external shear traction and bf fpðtÞ is added to (D.2c) to cancel its effect. This yields
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br2
0ws ¼ �bfbr2
0wd ¼ 1=c2so

2
ttwd þ bf fpðtÞ

ðD:3Þ
The solution to ws satisfying the boundary conditions (D.2b) is
wsðrÞ ¼ ð2r2o ln r � r2Þ=ð2r2o ln rp � r2pÞ

srzsðrÞ ¼
E

ð1þ mÞ
ðr2o � r2Þ

ð2r20 lnðrpÞ � r2pÞr
bf ¼ 2=ðr2o ln rp � r2p=2Þ

ðD:4Þ
Expand wd in terms of its eigenfunctions ujðrÞ
wdðr; tÞ ¼
X
j

ajðtÞujðrÞ

ujðrÞ ¼ J0ðkrjrÞ � ðJ0ðkrjrpÞ=Y0ðkrjrpÞÞY0ðkrjrÞ
ðD:5Þ
Substituting (D.2a) in (D.1a) using (D.3) and (D.5) and enforcing the orthogonality of ujðrÞ produces

uncoupled equations in ajðtÞ
€ajðtÞ þ x2
j ajðtÞ ¼ �ðNaj=NjjÞ€fpðtÞ � ðNbj=NjjÞc2sbf fpðtÞ

Naj ¼
Z ro

rp

ujðrÞwsðrÞrdr; Nbj ¼
Z ro

rp

ujðrÞrdr; Njj ¼
Z ro

rp

u2
j ðrÞrdr

ðD:6Þ
ð�Þ is time derivative and xj are roots of the dispersion relation
J0ðkrjrpÞY 0
0ðkrjroÞ � J 0

0ðkrjroÞY0ðkrjrpÞ ¼ 0; krj ¼ xj=cs ðD:7Þ
ð Þ0 is derivative with respect to the argument.
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